Glutamate and Glutamine in Metabolism Glutamate, at the Interface between Amino Acid and Carbohydrate Metabolism

نویسنده

  • John T. Brosnan
چکیده

The liver is the major site of gluconeogenesis, the major organ of amino acid catabolism and the only organ with a complete urea cycle. These metabolic capabilities are related, and these relationships are best exemplified by an examination of the disposal of the daily protein load. Adults, ingesting a typical Western diet, will consume ;100 g protein/d; the great bulk of this is metabolized by the liver. Although textbooks suggest that these amino acids are oxidized in the liver, total oxidation cannot occur within the confines of hepatic oxygen uptake and ATP homeostasis. Rather, most amino acids are oxidized only partially in the liver, with the bulk of their carbon skeleton being converted to glucose. The nitrogen is converted to urea and, to a lesser extent, to glutamine. The integration of the urea cycle with gluconeogenesis ensures that the bulk of the reducing power (NADH) required in the cytosol for gluconeogenesis can be provided by ancillary reactions of the urea cycle. Glutamate is at the center of these metabolic events for three reasons. First, through the well-described transdeamination system involving aminotransferases and glutamate dehydrogenase, glutamate plays a key catalytic role in the removal of a-amino nitrogen from amino acids. Second, the “glutamate family” of amino acids (arginine, ornithine, proline, histidine and glutamine) require the conversion of these amino acids to glutamate for their metabolic disposal. Third, glutamate serves as substrate for the synthesis of N-acetylglutamate, an essential allosteric activator of carbamyl phosphate synthetase I, a key regulatory enzyme in the urea cycle. J. Nutr. 130: 988S–990S, 2000.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate, at the interface between amino acid and carbohydrate metabolism.

The liver is the major site of gluconeogenesis, the major organ of amino acid catabolism and the only organ with a complete urea cycle. These metabolic capabilities are related, and these relationships are best exemplified by an examination of the disposal of the daily protein load. Adults, ingesting a typical Western diet, will consume approximately 100 g protein/d; the great bulk of this is m...

متن کامل

Natural products as safeguards against monosodium glutamate-induced toxicity

Monosodium glutamate is a sodium salt of a nonessential amino acid, L-glutamic acid, which is widely used in food industry. Glutamate plays an important role in principal brain functions including formation and stabilization of synapses, memory, cognition, learning, as well as cellular metabolism. However, ingestion of foodstuffs rich in monosodium glutamate can result in the outbreak of severa...

متن کامل

Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To ...

متن کامل

Effects of starvation, diabetes and corticosteroid treatment

There is increasing evidence that membrane transporters for glutamine and glutamate are involved in control of liver metabolism in health and disease. We therefore investigated the effects of three catabolic states [starvation (60 h), diabetes (4 days after streptozotocin treatment) and corticosteroid (8-day dexamethasone) treatment] associated with altered hepatic amino acid metabolism on the ...

متن کامل

NMR studies of compartmentalized cerebral carbohydrate metabolism

Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000